While Global Navigation Satellite Systems (GNSSs) are dominating the scene for outdoor Location-Based Services (LBS), including automotive navigation and smartphone applications, new technologies, commonly called Real-Time Location Systems (RTLS), are making inroads to support new high-accuracy location use cases, such as asset and material tracking, personnel tracking, vehicle and fleet tracking, tool and equipment tracking, indoor navigation, and proximity services. Typical end markets that will benefit from RTLS solutions include manufacturing campuses, airports, hospitals, warehouses, oil & gas sites, and other smart building spaces.
While many existing RTLS deployments require different technologies for indoors and outdoors, 5G positioning is emerging to make LBS more accurate, precise, reliable, and seamless across both indoor and outdoor environments. This article assesses the market opportunities and challenges of key RTLS technologies. Particular attention is dedicated to 5G positioning as a technology that could potentially disrupt the market and cater to large-scale deployment across multiple industries.
The market for RTLS infrastructure is expected to approach a staggering US$13 billion in revenue by 2025. The market has, so far, attracted hundreds of startups and small players developing various location software algorithms and hardware technologies, including Bluetooth, Wi-Fi, Ultra-Wideband (UWB), Visual Light Communication (VLC), acoustic sensors, and geomagnetic sensors.
Each RTLS use case has its own requirements. Applications that include Automated Guided Vehicles (AGVs) and mobile robots, worker safety applications, tool tracking, forklift location, access control, and high-value production monitoring and compliance can all benefit from Centimeter (cm)-level precision technologies, such as UWB, whereas other less precise technologies can be leveraged for broader logistics and asset tracking applications, lower-value assets, and more scalable implementations that require less stringent accuracy.
Mapping Different RTLS Technologies by Power Consumption and Accuracy Performance
Source: ABI Research
Although RTLS equipment (e.g., anchor-points, tags, and gateways) are now offered at relatively acceptable price points, a lot needs to be done to overcome some major barriers, including technology complexity, fragmentation of enabling technologies, and the still high cost related to installing RTLS infrastructure and its maintenance. The power consumption of RTLS tags and end devices is also a key priority that has not been properly addressed for all existing technologies so far. These energy-constrained terminals are supposed to sustain battery life for several months or years, not just weeks or days.
All of the barriers mentioned above are constraining the RTLS ecosystem from developing and flourishing. Players addressing this market are struggling to generate scale for their products. The spread of COVID-19 has worsened the case for these players as lockdown measures have made it difficult for them to implement their equipment in the marketplace.
This is exactly where 5G positioning could make a difference. This standard-based approach, inherently anchored in 5G telco infrastructure, will enable 5G positioning to benefit from the global and large-scale deployments of 5G, making it hard for alternative technologies to compete in terms of cost and performance. In addition, 5G will be able to address all RTLS use cases by using a single simplified infrastructure, rather than deploying numerous RTLS solutions (e.g., UWB, Bluetooth Low Energy (BLE), Wi-Fi, etc.) that are often use case-specific and require heterogeneous equipment (e.g., tags, anchor points, and gateways).
By leveraging the advantages of 5G communication, 5G positioning can potentially achieve low-latency, up to cm-level horizontal accuracy, and up to floor-level vertical accuracy. The technology promises to handle asset tracking and communications functions under the very same cellular infrastructure. The first wave of 5G positioning specifications, dealing with above meter-level location accuracy, is now frozen under the 3rd Generation Partnership Project (3GPP) Release 16 framework, while sub-meter-level accuracy specifications are currently being studied under 3GPP Release 17.
Countries ahead of the curve in deploying 5G infrastructure will see the first commercial applications of 5G positioning by 2022, with the first use cases to include workers’ safety, emergency rescue, and vehicle management.
Once Release 17 is frozen, 5G positioning will be able to entrench progressively into indoor environments starting from 2023. This new wave will unlock one of the largest potential markets: industrial and warehousing applications. Industrial applications can only take place after Ultra-Reliable Low-Latency Communication (uRLLC) and Massive Machine-Type Communications (mMTC) become widespread, with local private 5G networks for machine automation, Internet of Things (IoT) sensor monitoring, and digital factory cloud services serve as stepping stones to 5G positioning.
5G positioning will inherit many advantages of 5G infrastructure that could potentially enhance its accuracy, including:
These assets will enable 5G positioning to follow the overall 5G steps and create brand new opportunities in industrial asset tracking and commercial automation applications. These two applications are core for composing the Industrial IoT (IIoT) picture that will allow business owners to monitor and locate workers, assets, and tools in real time with a high level of accuracy. Coupled with IIoT software platforms, this can empower businesses to increase automation and enhance the efficiency of their factory processes.
While opportunities lie ahead for 5G positioning, the industry needs to address several challenges to tap into the full potential of the technology, and chief among them are the following:
Low-power specifications are essential for extending the deployment of 5G positioning to power-constrained devices, including tags and less intelligent terminals that require months of battery life. Without these specifications, vendors of 5G terminals may face a serious challenge in balancing between the level of accuracy required for RTLS use cases and the overall power consumption of these terminals. ABI Research recommends that key contributors to 3GPP standards address the low power 5G positioning issues, so solution providers can compete adequately with short-range wireless technologies that currently support RTLS tags and provide months or even years of battery life. Once the terminal power consumption issue is addressed, the value proposition of 5G positioning will be strengthened across a variety of applications; otherwise, business opportunities for the technology could be jeopardized and its market potential could be limited to a handful of use cases and markets.
About Malik Saadi: Malik Saadi, Managing Director and Vice President, Strategic Technologies, is focusing on technology innovation across various industries, including telecommunications, consumer electronics IoT, and other emerging industries.
With more than 16 years of experience in the telecommunications and computing industries as a technology expert and analyst, he guides his research team toward uncovering the impact of technology innovation on different industries and markets, with the ultimate goal is to provide clients with both quantitative and qualitative vision of the overall market development and how the various technologies involved will empower this development.