Registered users can unlock up to five pieces of premium content each month.
5G and Wi-Fi Continue to Evolve |
NEWS |
5G technology will not only bring support for enhanced mobile broadband, but also massive low-power Internet of things (IoT) applications, alongside much better support for mission-critical IoT applications, to enable ultra-reliable, high throughput, low-latency, robust, and resilient communications in areas such as industrial manufacturing, remote surgery, and autonomous vehicles, among many others. At the same time, however, Wi-Fi continues to evolve with Wi-Fi 6 and Wi-Fi 6E, bringing new benefits for a variety of applications, many of which are likely to overlap and intersect with potential 5G use cases.
Wi-Fi 6 technology represents the next phase of Wi-Fi’s evolution in the 2.4 Gigahertz (GHz) and 5 GHz bands, but it is more than just faster Wi-Fi we normally think of with traditional Wi-Fi upgrades. New enhancements, such as Orthogonal Frequency-Division Multiple Access (OFDMA) helps reduce frequency fading and interference issues, resulting in increased throughput, lower latency, and more efficient use of the spectrum. This helps Wi-Fi 6 deliver significantly higher capacity in dense environments, better mitigate the effects of contention, and more closely resemble scheduling-based methods in cellular technologies, providing much more deterministic performance than ever before. The extension of Multi-User (MU)-Multiple Input, Multiple Output (MIMO) enables Access Points (APs) to service more devices at the same time, Target Wake Time (TWT) allows clients to sleep for longer periods of time, reducing power consumption, and Basic Service Set (BSS) coloring helps ignore traffic communicating the same frequencies on another network, helping improve reliability in very dense environments where there are overlapping APs. Wi-Fi 6 is also backwards compatible, meaning the huge installed base of devices built up over time in various enterprise environments can still easily connect to the network once deployed. At the same time, additional Wi-Fi security features, such as WPA3, have been introduced alongside Wi-Fi 6 to bolster encryption.
However, the most exciting change to the Wi-Fi landscape is the projected increased availability of 6 GHz spectrum over the next few years. On April 23, 2020, the U.S. Federal Communications Commission (FCC) voted to approve 1.2 GHz of unlicensed spectrum in the 6 GHz band available for Wi-Fi, with other regions anticipated to follow suit. As a result, Wi-Fi 6 and its new features have been extended into the 6 GHz band, now known as Wi-Fi 6E, and while the global regulatory landscape for 6 GHz outside the United States is still being finalized, it is hard to overstate the potential that 6 GHz can bring to Wi-Fi networks. The technology could bring about much higher throughput, much more capacity, greater reliability, lower latency, and better Quality of Service (QoS) than ever before, solving many of the key challenges that Wi-Fi is facing today, and addressing many 5G class use cases. But how will these technologies compete and collaborate with 5G across different market verticals?
Will 5G Kill Wi-Fi? |
IMPACT |
Keeping Wi-Fi 6 and 6E in mind, the key question is how the relationship with 5G will evolve and what these technologies will mean for 5G deployments in the years to come. A number of publications, whitepapers, and articles have a variety of perspectives on what 5G means for Wi-Fi. Many of these take the perspective that 5G marks the death of Wi-Fi, that it is an either/or solution, that Wi-Fi loses its value proposition in the 5G era, and that over time it will be replaced or eradicated. However, ABI Research believes that Wi-Fi 6, Wi-Fi 6E, and in the future, Wi-Fi 7, are not only complementary to 5G, but are fundamental enablers of high-throughput, low-latency, reliable, and robust wireless services within indoor and industrial environments. To dig a little deeper into each segment, ABI Research expects the following relationships to evolve between 5G and Wi-Fi:
Competition, Collaboration, or Convergence? |
RECOMMENDATIONS |
Increasingly, there is acknowledgement that both technologies will have a significant role to play within various environments. However, the question that remains is how will these two technologies intersect or converge in the future.
One area of particular interest for both Wi-Fi and 5G in the future will be industrial environments. Firstly, industrial environments are highly complex with a plethora of different requirements and use cases, and there is unlikely to be a one-size-fits-all solution. Some facilities may leverage 5G and private networks, others will leverage industrial Wi-Fi, and the majority are likely to have a combination of both technologies depending on the specific requirements. Wi-Fi is also leveraged extensively today in industrial environments. Over time, there will a strong incentive to upgrade to Wi-Fi 6 and 6E for better performance for smartphones, tablets, mobile computers, wearables, and Augmented Reality (AR)/Virtual Reality (VR) in the future, and there will still be a need to cater to the huge installed base of Wi-Fi devices. The cost of replacing all Wi-Fi-enabled devices with 5G in the coming years will be much too expensive and complex to justify. Wi-Fi also does not require additional costs for data or subscriptions, and the chipset cost for industrial devices is likely to be considerably cheaper. For manufacturing applications, some key features of 5G have also been delayed until later releases.
However, 5G is going to be extremely well suited for manufacturing applications, thanks to its high-mobility, high-throughput, low-latency, and massive connection capabilities, among other benefits. As far as industrial manufacturing is concerned, determinism and reliability are often the highest priority when selecting a networking technology for certain use cases. While Wi-Fi meets requirements through the implementation of proprietary protocols, 5G promises to bring end-to-end solutions that package all the industrial requirements, which will resolve a number of challenges for implementers, create scale for 5G solutions, and, consequently, lower the overall infrastructure cost. Much work needs to be done on the Wi-Fi side to help standardize these benefits for industrial environments going forward.
Industrial Wi-Fi will continue to play a key role for many applications; however, this will increasingly be complemented by 5G deployments to ensure reliable connectivity across large industrial campuses, be able to effectively address mobility requirements, and enable ultra-low latency mission-critical and safety applications, and large-scale IoT connectivity. While initial Wi-Fi 6 industrial trials are promising, and 6E, in particular, has been proven to provide multi-gigabit low-latency throughput, the Wi-Fi ecosystem must do much more here in self-promoting the capabilities of Wi-Fi technologies within industrial environments, as, to date, the market has emphasized what Wi-Fi cannot do, with limited promotion and acknowledgement of what Wi-Fi can or will be able to achieve in the future. Many of the transformational use cases for smart industry, including AI, robotics, AR and VR, and condition-based monitoring, among others, could be as equally suited to Wi-Fi connectivity as 5G, especially in indoor areas with much lower mobility requirements. There is, therefore, a strong need for more Wi-Fi 6 and Wi-Fi 6E trials and deployments in industrial environments.
It is clear that private 5G is going to have an enormous role to play in industry 4.0 solutions. Advantages of private 5G include dedicated coverage, exclusive capacity, intrinsic control, service customization, and extremely dependable communication. Companies like Ericsson have already done a number of tests and deployments for 5G within manufacturing environments. Just last week, the first private 5G network in the United Kingdom went live with BT. The new 5G installation in Worcester, in the West Midlands, will enable a variety of industrial use cases, including sensors, wearables, data analytics, robotics, and AR, among others.
However, various organizations are beginning to argue that 5G use cases are likely to require combined resources from both The 3rd Generation Partnership Project (3GPP) and Wi-Fi networks in order to provide the most effective coverage that is capable of meeting some of these diverse enterprise and industrial requirements. As both technologies are undoubtedly here to stay in these environments, there is a strong case for fostering interoperability and convergence to provide the most effective and highest-performing network depending on the application and use case. As discussed, industrial use cases and the technology selection will depend on specific throughput, latency, mobility, density, coverage, and reliability requirements. While mission-critical deployments may need 5G Ultra-Reliable Low-Latency Communications (URLLC), non-mission-critical use cases could leverage Wi-Fi 6 and Wi-Fi 6E now that the technology is much more capable of meeting IMT-2020 requirements than previous standards. There is a growing belief that smart manufacturing and other environments will leverage 5G and Wi-Fi to enable the most cost-effective way of delivering these varied use cases.
The Wireless Broadband Alliance recently published a whitepaper on Wi-Fi and cellular Radio Access Network (RAN) convergence, which highlights techniques that could enable convergence and identifies solutions to bridge technology gaps in order to realize the full benefits of both 5G and Wi-Fi technologies. The whitepaper argues that due to the varied requirements of the smart factory, the networking infrastructure will be vastly improved by leveraging both 5G and Wi-Fi, and that these technologies should be able to seamlessly interact with each other and access the 5G core network via both 5G or Wi-Fi radios. A key challenge facing the future of industrial connectivity is to be able to effectively deploy and manage both technologies to allow organizations to maximize the potential of each to bring about real improvements to a variety of production, logistics, and other industrial use cases, and to do so in the most cost-effective manner. Some numbers point to cellular 5G deployments being up to 10X less expensive when operators combine Wi-Fi and cellular connectivity, and thanks to the new enhancements, such as OFDMA, meaning unlicensed Wi-Fi spectrum will be used much more efficiently, this will allow for many more types of devices and 5G class services to be delivered with quality over Wi-Fi 6 and 6E. The potential combination of Wi-Fi and 5G using exactly same core could enable the efficient use of Wi-Fi where it needs to be, and 5G where it needs to be, providing more flexibility to address different scenarios more cheaply and efficiently.
It is clear that thanks to Wi-Fi’s continued evolution, the perception of Wi-Fi as being unreliable, low quality, and unable to deliver 5G-class services will dissipate over time as it migrates to Wi-Fi 6, 6E, and Wi-Fi 7. Wi-Fi 6 and Wi-Fi 6E will deliver more deterministic, reliable, and secure performance than ever before, while continued improvements will help deliver high-throughput, low-latency services in line with 5G.
As a result, more efforts need to be made to understand the ways in which 5G and Wi-Fi can work together to offer the most cost-effective and best-performing solution for 5G service rollouts, particularly as the technology is often regarded as more cost effective across a variety of enterprise deployments. More discussion needs to be had around how these technologies can work together to deliver optimal connectivity in all situations, providing cost-effective, reliable, high QoS, and secure networks, and deliver transformative services and Return on Investment (ROI). Newly available 5G spectrum combined with dense Wi-Fi 6, Wi-Fi 6E, and Wi-Fi 7 deployments may be the most economical way to bring 5G-class services to the widest number of enterprises in the future.