Registered users can unlock up to five pieces of premium content each month.
Sustainable Use Cases Abound for Bluetooth® Low Energy in Industrial IoT |
NEWS |
When we think about the transformative technologies integral to realizing a sustainable future, our minds often gravitate to seas of wind turbines, fields of power plants, and fleets of Electric Vehicles (EVs). Sustainable Internet of Things (IoT) ecosystems are foundational to our ability to harness sustainable technologies effectively. Short-range wireless connectivity technologies such as Bluetooth® are playing an increasingly fundamental role in sustainability-oriented use cases. For instance, Silicon Labs has designed a robust long-range Bluetooth® Low Energy (LE) chip that detects faults and conducts emergency shut-offs for solar Photovoltaics (PV) systems, increasing their safety. Meanwhile, Nordic Semiconductor has integrated its Bluetooth® LE chip into the Enua Charge—an EV portable charging device—to allow for more cost-efficient charging. The IoT is similarly important to sustainable industrial technologies. Leveraged within sustainable industrial ecosystems, Bluetooth® LE is core to Industrial Internet of Things (IIoT) technology and recent advancements in Bluetooth® LE have introduced a multitude of methods to enhance operational efficiencies in commercial and industrial settings.
Within the commercial and IIoT sectors, Bluetooth® LE mesh-enabled lighting and Heating, Ventilation, and Air Conditioning (HVAC) systems can be used to optimize energy usage and fine-tune environmental monitoring, helping to cut energy consumption in buildings, reduce waste, and optimize resource management. Among others, Nordic Semiconductor, Silicon Labs, Telink, Infineon, and Renesas Electronics offer Bluetooth® LE mesh-enabled solutions that can be leveraged for HVAC and lighting applications. This is a crucial step toward cutting the operational emissions of buildings, which stand at an astonishing 28% share of annual global Carbon Dioxide (CO2) contributions. Similarly, Bluetooth® LE Real-Time Location System (RTLS) solutions—such as those offered by Cassia Networks, Kontakt.io, Zebra, and many others—can be used to track items on the factory floor, delivering efficiencies in inventory management and asset utilization. Bluetooth® LE sensors can also be used to reduce factory downtime by tracking the vibration, pressure, flow, and temperature of industrial equipment, enabling predictive maintenance.
Demonstrating sustainable Bluetooth® applications both inside and outside the factory walls, Wiliot’s Bluetooth®-enabled tags offer enhanced datafication throughout supply chains, increasing awareness of inefficiencies, while enabling closer alignment of supply with demand. Wiliot’s innovation heralds the introduction of Ambient IoT: a new class of technology powered by energy harvested from a device’s environment. The reliance of Ambient IoT on Bluetooth® LE underlines the technology’s relevance for sustainable IIoT and its growth potential as Ambient IoT begins to establish itself in industrial ecosystems. In retail spaces, Bluetooth® LE-enabled Electronic Shelf Labels (ESLs), backed by the new ESL standard, can also help reduce waste through dynamic pricing of perishable items close to their expiration date, avoid the use of paper labels, and optimize order picking. In addition, they can provide consumers with sustainability information on the products they are buying, enabling them to make more eco-conscious decisions at the point of sale.
A Unique Solution for Sustainability Imperatives |
IMPACT |
Today, sustainability is as much a buzzword as it is an environmental, ethical, and regulatory requirement. Environmental, Social, and Governance (ESG) reporting is now mandatory across numerous major stock exchanges. While the climate-conscious and regulatory skeptics alike have their reservations about ESG, the investment-led sustainability drive is unlikely to significantly falter. Global ESG assets are expected to reach 25% of an anticipated US$140 trillion total assets under management by 2030, according to a Bloomberg Intelligence report, as large investors move away from conventional funds. Interestingly, pressure to adopt environmentally-friendly practices is also emanating from within the tech sector itself, with Apple aiming to become carbon neutral across its entire global value chain by 2030 and Samsung making similar inroads internally.
This is all to say that as companies increasingly adopt sustainable practices, there will be growing demand for industrial technologies that accelerate net-zero transitions. For IIoT, Bluetooth®-enabled devices appear distinctly appropriate. ABI Research’s forecast 24% Compound Annual Growth Rate (CAGR) of Bluetooth® LE device shipments for IoT applications between 2022 and 2028 is indicative of the growing relevance of the technology. Although equipment managers certainly have their pick of an ever-growing array of technologies to help streamline their industrial operations, Bluetooth® LE offers a uniquely attractive value-add:
The Forward-Looking Technology Demands Strategic Positioning to Match |
RECOMMENDATIONS |
Bluetooth® LE is uniquely applicable to IIoT solutions, especially amid a growing environmental conscience in business, finance, and governance. For IoT technologies, the future for industry-oriented solutions appears particularly promising. ABI Research’s forecasts for Bluetooth® LE IoT device shipments for energy management, condition-based monitoring and maintenance, and asset management and locations services stand at 55%, 47%, and 21% CAGRs, respectively. With the growing importance of sustainable IIoT solutions in mind, there are several ways in which Bluetooth® LE vendors can capitalize on this shift: