Total revenues generated from quantum computing services will exceed US$15 billion by 2028, forecasts ABI research, a market-foresight advisory firm providing strategic guidance on the most compelling transformative technologies. The demand for quantum computing services will be driven by some process hungry research and development projects as well as by the emergence of several applications including advanced artificial intelligence algorithms, next-generation cyber security encryption, traffic routing and scheduling, protein synthesis, and/or the design of advanced chemicals and materials. These applications require a new processing paradigm that classical computers, bound by Moore’s law, cannot cope with. However, one should not expect quantum computers to displace their classical counterparts anytime soon.
Unlike classical computers, based on sequential processing principles, quantum computers leverage their strengths from two fundamental characteristics inspired from quantum physics, namely entanglement and superposition, which make them super powerful for undertaking certain tasks, notably inter-correlated events that need to be executed in parallel.
“Classical computing is not dead, even in the post-Moore’s law era,” said Lian Jye Su, Principal Analyst at ABI Research. “These machines will remain the ultimate processing power for executing traditional tasks such as text, video, speech processing, and signal processing, but will be potentially challenged by quantum machines when it comes executing algorithms that require massive parallel processing.”
Quantum computing is, however, still in its embryonic stage of development and is not ready for large-scale commercial deployment anytime in the near to mid-term. Scalability, technology stability, reliability, and cost efficiency are the major factors the industry should address before seeing quantum computers moving beyond lab projects or very restricted and constrained commercial deployment. The attempts to create quantum computers that are stable and have low error rate require heavy investment in infrastructure, software development, and human expertise. Operation is currently performed under extreme low-temperature, high magnetic field, and in a vacuum or sterile environment, making the technology extremely difficult to scale and expensive to operate. It is therefore not surprising that quantum computing is unlikely to achieve the distribution level of classical computers anytime within the next 10 years. The technology will remain concentrated in the cloud domain for many years to come.
D-Wave Systems, IBM, and Rigetti Computing are few of the vendors that have commercial quantum computing systems. Based on adiabatic quantum computation, D-Wave System’s quantum computer has been sold to government agencies, aerospace, and cybersecurity vendors. However, this type of system is constrained in terms of computational capabilities as compared to the rest of its counterparts. IBM, Rigetti Computing and other cloud computing giants such as Alibaba, Google, Intel, and Microsoft are opting for a quantum computing system based on the quantum gate model.
“While the industry explores various hardware implementation methods by exploiting different quantum physics phenomena, they all face the harsh reality of tradeoffs, having to find the right balance between maintaining long coherence time, reducing error rates, minimizing cost, and developing scalable products,” said Su.
Therefore, excessive cost and extremely restrictive physical implementation will limit quantum computing technology to government, public, and military agencies as well as major enterprises and cloud computing giants. The technology will be made available to the public via an as-a-service business model. “The future of cloud computing will increasingly rely on parallelism as new types of sophisticated applications and algorithms emerge. These algorithms will need more than Moore’s law for their execution and the industry will need to deploy more efforts to accelerate the development of quantum computers as alternatives to their classical computer counterparts,” concluded Su.
These findings are from ABI Research’s Quantum Computing: Core Technologies, Development, and Use Cases report. This report is part of the company’s AI & Machine Learning research service, which includes research, data, and Executive Foresights.
About ABI Research
ABI Research provides strategic guidance for visionaries needing market foresight on the most compelling transformative technologies, which reshape workforces, identify holes in a market, create new business models and drive new revenue streams. ABI’s own research visionaries take stances early on those technologies, publishing groundbreaking studies often years ahead of other technology advisory firms. ABI analysts deliver their conclusions and recommendations in easily and quickly absorbed formats to ensure proper context. Our analysts strategically guide visionaries to take action now and inspire their business to realize a bigger picture. For more information about ABI Research’s forecasting, consulting and teardown services, visionaries can contact us at +1.516.624.2500 in the Americas, +44.203.326.0140 in Europe, +65.6592.0290 in Asia-Pacific or visit www.abiresearch.com.
About ABI Research
ABI Research is a global technology intelligence firm uniquely positioned at the intersection of technology solution providers and end-market companies. We serve as the bridge that seamlessly connects these two segments by providing exclusive research and expert guidance to drive successful technology implementations and deliver strategies proven to attract and retain customers.
ABI Research 是一家全球性的技术情报公司,拥有得天独厚的优势,充当终端市场公司和技术解决方案提供商之间的桥梁,通过提供独家研究和专业性指导,推动成功的技术实施和提供经证明可吸引和留住客户的战略,无缝连接这两大主体。
For more information about ABI Research’s services, contact us at +1.516.624.2500 in the Americas, +44.203.326.0140 in Europe, +65.6592.0290 in Asia-Pacific, or visit www.abiresearch.com.
Americas: +1.516.624.2542
Europe: +44.(0).203.326.0142
Asia: +65 6950.5670